Changing game content

Adding new graphics objects

This section describes how to incorporate own 3d artwork from 3ds MAX into the game.

Adding new environment objects

First copy the 3ds MAX file rtx-export.dle (found in tools/max-plugins) into the plugins directory of your 3ds MAX installation. Then start 3ds MAX and open the file with the 3d art you would like to use in the game. Select “File / Export…” chose RTX as file type and select the “override texture directory” option with “textures/” typed in the editable field (note the slash at the end of the path). Save the file to a directory of your choice, let’s say graphics/objects/MyObjects. Make sure that any textures used in the scene are copied to a “texture” subdirectory. Alternatively you can also copy the texture to the graphics\objects\shared_textures directory in Avencast. Graphics files in this directory can be accessed by any RTX file, regardless of the actual texture path specified in 3ds MAX. Any RTX file (or its binary complement 3sc) can be viewed with the ViewRTX.exe tools. Note that you need to specify this default texture path in the RTX Viewer in order for the viewer to find it.
Now we need to add the new object to the CFG files to make the file accessible for the VSD editor and the Avencast engine. Depending on in which level you are planning to use the object open one of the ‘wrldobj’ CFG files, e.g. cfg\wrldobj\academy_wrldobj.cfg. Alternatively you could make a new CFG for your own files, just make sure you have the CFG file added to the VSD file in the VSD Editor (See Tut 1).
Now open the CFG file. Let’s assume our 3d object was a piece of rock. Add the following entries to the CFG file:

#

type="object"

desc="My Rock"

id="MyRock"

size=20

#

type="object"

desc="My Big Red Rock"

id="MyRock"

size=40

scale=2

DiffCol = 1, 0.5, 0.5

Next open the cfg/3dobjs.cfg and add the following lines:

#

desc="MyRock"

sFile="graphics\objects\MyObjects\myRock.rtx"

scale=1
Now open the VSD Editor and press F3. The two versions of your new object (“MyRock” and “My Big Red Rock”) should be in the list of objects, ready to be added to the level.

File Formats

Note that the RTX file format is an ASCII file format only meant for testing. Please use the rtx23sc.exe tool or the RTX Viewer to convert the file to its binary version called 3SC which is much smaller and loads much faster.

For textures it is recommended to use the DDS file format in DXT3 format for none- transparent textures, respectively TGA for textures with transparent areas.
Modifying characters / monsters

Characters and monsters are treated differently for the engine. Let’s look at making a modification of monster with a new texture first, let’s say the Imp.
Open the 3dcreatures.cfg (which is the pedant of the 3dobjs.cfg file for environment objects) and scroll down to the entry

#

desc="Imp"

sFile="graphics\npc\summon\imp\imp_fly.3sc"

:

:

TextureLowerBody1="graphics\npc\summon\imp\textures\imptex1.dds"

TextureLowerBody2="graphics\npc\summon\imp\textures\imptex1_pink.dds"

TextureUpperBody1="graphics\npc\summon\imp\textures\wings.dds"

TextureUpperBody2="graphics\npc\summon\imp\textures\wings_pink.dds"

As you can see the imp has two different texture sets for the upper and the lower part each – a standard texture and a pink version (as used for the quest “Doclina’s Pink Imp”).

Now let’s assume we have drawn our own textures for a “freaky” version of the imp. In this case add a third texture entity, e.g.:

TextureLowerBody3="graphics\npc\summon\imp\textures\imptex1_freaky.dds"

TextureUpperBody3="graphics\npc\summon\imp\textures\wings_freaky.dds"
So how do we add our own version of the imp to a level? All present creatures can be found in the cfg/wrldobj/creatures_wrldobj.cfg file. Scroll down to the Imp entry:

#

type="creature"

desc="NK_Imp"

EditName="NK_Imp"

id="Imp"

name="DB:NK_Imp"

strategy="NK_Imp"

hitp=35

damPhys1=5.0

expkill=7

maxAccel=550

Note that the entry id=”Imp” refers to the respective creature in the 3dcreatures.cfg.
Info about text from the database:

The name=”DB:NK_Imp” specifies that the name of the creatures (as to be displayed during the game) shall be taken from the database from the entry with the ID named NK_Imp from the “Name” table.

The database file can be found in the lang\LANG directory, with LANG being the language code (e.g. eng for English). It is a standard SQLite database file and can be viewed and edited with the SQLite browser (free download at http://sqlitebrowser.sourceforge.net/)
We can now easily make our own version of the imp by adding right after this block the following:

##
desc="Freaky_Imp"
TextureUpperBody=3
TextureLowerBody=3

The ## means that by default all properties set by the latest precedent standard block are also set for this data block. In other words we now have the exact same Imp as the “NK_Imp”, but with the texture set number 3 as specified previously in the 3dcreatures.cfg. Note that we do not necessarily have to make a new entry in on of the wrldobj CFG file. We could as well add the standard Imp to the world and set the TextureUpperBody=3 and TextureLowerBody=3 in the object property dialog in the VSD editor.
Adding new equipment

There are two types of equipment in terms of how they affect the visual look of the character:

1. Equipment that is represented by a mesh added to a certain body part. E.g. weapons, that are attached to the hand (or more precisely a special helper object named ‘staff_dummy’) or helmets and shoulder plates.
2. Equipment that only changes the look of the characters in the game by exchanging the texture and/or mesh of different body parts.
Making new items of the first type is done in the following way. Let’s make a new staff. Start by adding your own staff mesh file to the 3dobjects.cfg file, e.g:

#

desc="MyFreakyStaff3dObject"

sFile="graphics\objects\collectables\myitems\MyFreakyStaff.3sc"

Then open the wrldobj/weapons_wrldobj.cfg file and make a new entry for the staff:

#

type="object"

desc="MyFreakyStaff"

id="MyFreakyStaff3dObject"

item="MyFreakyStaffItem"

size=5

solid=0

pickup=1

Not that in the wrldobj cfg files we only set the properties of objects that are added to the world. So their look and other physical properties are defined here. As there is a large number of different equipment to be found in Avencast the actual item properties (such as armour value, etc) are set in different cfg files, namely the item_bodywear.cfg, item_weapons.cfg and item_others.cfg. This way many versions of an item with the same physical properties can be made by adding a new entry to the respective item_?? cfg file and referring to the same wrldobj cfg entry.

For example, let’s make a new weapon. Open the item_weapons.cfg and make a new entry for a “freaky staff”:
#

desc="Bone 01"

ItemName="My Freaky Staff"

class="weapon"

SubType=1

objID="MyFreakyStaff"

EquipmentType="weapon"

BodyPart="staff"

img="graphics\gui\items\weapons\MyFreakyStaff.tga"

imgInfo="graphics\gui\items\weapons\MyFreakyStaff.tga"

damPhys1=5
specialitem=1

The img and imgInfo entries have to refer to your image file of the weapon as it can be seen in the inventory respectively when right-clicking the item. Not that the specialitem=1 property means that the weapon will not be added to the monster treasure, but can only be found if it is explicitly added to an inventory (e.g. chest or monster) by a script (see AddToInventory() command) or an object property set in the VSD level file (see AddItem property). To quickly test your freshly created item, you can use the console: simply type item(“MyFreakyStaffItem”) to receive the staff.

Let’s have a look at an item of the second type that only changes the texture and/or mesh.

Any such textures and meshes must be specified in the 3dcreatures.cfg. Whereas one has to add new correctly skinned meshes to the 3sd MAX scene in order to access new meshes, changing only the texture is relatively easy. First add you new set of textures to the 3dcreatures.cfg analogously to as described in the section “Modifying characters / monsters”. Let’s assume that we are making a new texture for a freaky set of boots (so we have added a new TextureBoots25 = … entry to the 3dcreatures.cfg). Next, we add our boots to the item_bodywear.cfg file. Note that for the sake of simplicity we can simply refer to one of the present boots in the bodywear_wrldobj.cfg instead of making a new 3d object file ond a new wrldobj entry.
#

desc="MyFreakyBoots"

class="armour"

img="graphics\gui\items\bodywear\boots_freaky.tga"

objID="Boots01_OG"

EquipmentType="footwear"

TextureBoots=25

might=1

defPhys=4

defMagic=0
Adding a new character / monster

To make new characters or monsters you need:

a) A correctly skinned mesh. Please be aware that you have to follow a few rules to correctly make and export animations. Read the later section about this topic.
b) All the necessary animation cycles in different files. The walk cycle and an idle cycle (=”bored cycle”) are a must, yet for most characters or monsters you will furthermore need many more cycles, such as the “die cycle”, the “knockdown cycle”, the “hit cycle”, the various attack cycles and – to improve the animations – different walk cycles for the different directions of movement (left, right, back, forward, etc)
Save the file with the mesh to a file e.g. called MyCoolMonster_mesh.3sc. You should only save the mesh and spare all the animation data in case there is any in the MAX file (check the respective option of the RTX exporter)

Then save all the animation cycles as well, e.g. to files called MyCoolMonster_walk.3sc, MyMonster_bored1.3sc, etc. You only have to export the bones with the animations data, you do not have to export the meshes. Warning: Make sure that the bone setup in the animation files matches 100% the setup of the file with the mesh.

Next open the anicycles.cfg file and add a new entry representing the animations of your new monster. For example:

#

desc="MyCoolMonsterAnis"

acWalk="graphics\npc\MyCoolMonster\MyCoolMonster_walk.3sc"

acWalkStart=200

acWalkEnd=500

acWalkSpd=1.0

acBored1="graphics\npc\MyCoolMonster\MyCoolMonster_bored1.3sc"

acBoredStart1=200

acBoredEnd1=500

acBoredSpd1=1.0

acDie="graphics\npc\MyCoolMonster\MyCoolMonster_die.3sc"

acDieStart=200

acDieEnd=500

acDieSpd=1.0

.

.

.
The ac__Start and ac___End entries can be set to the start and end frame number of the animation as it can be seen in 3ds MAX, but you can also skip this entry and the entire animation time span of the 3sc MAX file will be used.
Next open the 3dcreatures.cfg and add a new entry, such as:

#

desc="MyCoolMonsterMesh"

sFile="graphics\npc\MyCoolMonster\MyCoolMonster_mesh.3sc"

acSet="MyCoolMonsterAni"

angle=-90

size=20

set the angle entry in a way that the creature is facing towards the (by angle) rotated X-axis (otherwise your creature might be facing the wrong way). You can also set numerous other parameters, please look at the reference help file for more details.
Finally add an entry to one of your wrldobj files (e.g. the creatures_wrldobj.cfg file), such as:

#

type="creature"

desc="MyCoolMonster"

id="MyCoolMonsterMesh"

name="Cool Monster"

strategy="DefaultAttack"
Note that the “DefaultAttack” strategy assigns a very simple AI attack strategy to the monster (which will only work if the creature really has an attack cycle specified). If your creatures should attack in a special way you will have to program your own strategy and specify the various actions a creature can perform. Please look in the reference help file under strategy.cfg respectively actions.cfg for more information.
Rules for exporting skinned and animated objects correctly

· Only use one of the following combinations of modifiers in 3ds MAX to create your bone driven animations.

· physique modifier on the biped

· the Skin modifier on bones

· the Skin modifier on Softimage CAT (character animation toolkit)

· Always apply an XFormReset on the mesh before skinning. You should do this because 3ds MAX is prone to wrecking up internal matrix data. In case you notice that the mesh is not in the correct location (in relation to its bones) when viewing it as an RTX file, then you probably didn’t apply the XFormReset, or you didn’t follow the following rule:
· Do not apply any transformation on the mesh after skinning. Only use the bones to animate the mesh.
